
Chapter 8

Computational Requirements

Optimal data assimilation has many advantages. Most importantly, we can derive truly
best estimates, and we can assess whether the hydrologic model and our assumptions on
its shortcomings are valid in the sense that they are statistically consistent with the as-
similated data. Unfortunately, the computational burden for optimal data assimilation is
also formidable. In this Chapter, we closely examine the computational requirements of the
representer algorithm.

First, we review the computational demands of the synthetic experiments presented
earlier and of a few more experiments that were not previously discussed (Section 8.1).
Differences in the computational burden are explained and traced back to the design of the
experiments. We then further investigate the computational requirements paying particular
attention to the scalability of the approach (Section 8.2). This includes a review of the
memory requirements and the possibility of parallel processing. Finally, we compare the
computational requirements of the representer approach to other data assimilation methods
(Section 8.3).

8.1 Computational Demands

In summary, the computational burden is influenced by three factors. First, the number of
scalar data that are assimilated chiefly determines how many model integrations we need in
order to derive the optimal estimates. Second, the number of nodes in the hydrologic model
determines the CPU requirements for each model integration. Third, the computational
effort is strongly influenced by the prior statistics and the number and length of the assim-
ilation windows. The first two factors critically affect the scalability of the approach. We
will postpone their discussion until Section 8.2. The last factors are the easiest to isolate,
because it is straightforward to control the number of data and the size of the model. But
they are also the hardest to understand (Section 8.1.2).

8.1.1 Computational Effort for the Synthetic Experiments

Table 8.1 summarizes the computational requirements of the experiments of Chapters 6
and 7 and of a few more experiments which were not presented earlier. The experiments
are partitioned into three groups, according to the reference experiment they are based
on. For the experiments that were presented earlier, we give the Section where a detailed
description of the setup can be found. The other experiments are straightforward variations

147

Experiment ideal Nep Not NZ ktl Σkcg N indint CPU Noise upd. N indint /N
dir
int

[h] [% CPU] [%]

1 Reference Exp. I Sec. 6.1 yes 512 12 6144 5 902 1819 30.5 3 3.0

2 (1:4) downscaling exp. Sec. 6.3 yes 512 12 1536 3 334 677 11.8 3 7.3

3 (1:16) downscaling exp. Sec. 6.3 yes 512 12 384 3 148 305 5.4 3 13.2

4 3-day repeat cycle † yes 512 4 2048 4 565 1142 20.4 3 7.0

5 6-day repeat cycle † yes 512 2 1024 3 365 739 13.2 3 12.0

6 Rain withheld Sec. 7.2 no 512 12 6144 7 594 1209 20.9 3 1.4

7 Wrong texture Sec. 7.3 no 512 12 6144 4 817 1646 28.5 3 3.3

8 Reference Exp. II Sec. 6.2 yes 512 12 6144 4 439 890 18.0 25 1.8

9 (1:4) downscaling exp. † yes 512 12 1536 3 183 375 7.3 26 4.1

10 (1:16) downscaling exp. † yes 512 12 384 2 78 162 3.3 25 10.5

11 (1:64) downscaling exp. † yes 512 12 96 3 47 103 2.2 27 17.6

12 3-day repeat cycle Sec. 6.4 yes 512 4 2048 4 290 592 11.5 26 3.6

13 6-day repeat cycle Sec. 6.4 yes 512 2 1024 4 234 480 9.8 25 5.9

14 12-day repeat cycle † yes 512 1 512 4 136 284 5.6 25 6.9

15 3 assim. windows A‡ Sec. 7.1 no 512 12 6144 3.4 181 372 6.9 22 0.9

16 12 assim. windows B‡ Sec. 7.1 no 512 12 6144 2.8 45 98 2.4 18 0.3

17 12 assim. windows C‡ Sec. 7.1 no 512 12 6144 2.2 33 73 2.0 16 0.3

18 Reference Exp. IIa † yes 128 12 1536 3 197 403 1.9 20 4.4

19 (1:4) downscaling exp. † yes 128 12 384 3 99 207 0.9 22 8.9

20 (1:16) downscaling exp. † yes 128 12 96 2 36 78 0.4 21 20.0

21 3-day repeat cycle † yes 128 4 512 4 162 336 1.7 18 8.2

22 6-day repeat cycle † yes 128 2 256 3 94 197 0.9 22 12.8
†No other results from these experiments were presented. ‡Some entries are averages over the assim. windows.

Table 8.1: Computational effort for the synthetic experiments. The number of estimation pixels is denoted with Nep, the number of
observation times with Not, the number of scalar data with NZ , the number of outer (tangent-linear) iterations with ktl, and the total
number of inner (conjugate-gradient) iterations with Σkcg. For the number of model integrations we count all forward and backward
runs separately. The total number of model integrations for the indirect representer method is N indint = 3ktl + 2Σkcg. The CPU time is
measured on a DEC Alpha workstation with a clock speed of 333MHz and does not include I/O and preprocessing. We also indicate
how much of the CPU time can be attributed to the process noise update. In the last column we compare the computational effort of
the indirect representer method with the burden of the direct approach, which requires Ndirint = ktl(2NZ + 3) model runs.

14
8

on the ones presented throughout the thesis. For example, the repeat cycle experiments of
the first group are designed in analogy to the repeat cycle experiments of Section 6.4, except
that they are based on Reference Experiment I. Likewise, the downscaling experiments of
the second group are designed similar to the ones in the first group but based on Reference
Experiment II.

The experiments of the third group are variants of the second group at a coarser scale.
For Reference Experiment IIa, we divide the same computational domain into 8× 16 = 128
estimation pixels of 10km×10km each. The prior statistics are the same as in Reference Ex-
periment II, except that we increase the correlation lengths by a factor of two (Section 8.2.2).
Moreover, instead of spatially aggregating the true solution of Reference Experiment II, we
use a different random seed when generating the synthetic true solution. This adds one
more realization to the sparse body of data and helps corroborate the results.

For all experiments of Table 8.1, we indicate whether or not the assimilation conditions
were ideal (Chapter 6). We then list the number of estimation pixels Nep, the number of
observation times Not, the number of scalar data NZ , the number of outer (tangent-linear)
iterations ktl, and the total number of inner (conjugate-gradient) iterations Σkcg, where
the sum is over all outer iterations. We also show the number of model integrations N indint
that are required in the indirect representer method. The last three columns contain the
CPU time, the proportion of the CPU time attributed to the process noise update, and the
percentage of the computational effort required by the indirect representer approach when
compared to the direct method.

The total count for the indirect representer method is N indint = 3ktl + 2Σkcg model in-
tegrations, where we count the forward and backward runs separately and equally. For
each outer iteration, we have to compute the representer coefficients with the conjugate
gradient solver in an inner loop (Section 2.3.4). During each of the iterations of the inner
loop, we have to compute one linear combination of adjoint representer fields and one linear
combination of state representer fields, which explains the factor of two in front of Σkcg. In
addition, for each outer iteration we need to calculate the prior trajectory (one integration)
and, after obtaining the representer coefficients, we must finally solve the tangent-linear
Euler-Lagrange equations for the state estimates (two integrations). This is why we need
an additional 3ktl model integrations.

By contrast, for the direct representer approach we need Ndirint = ktl(2NZ + 3) model
integrations. During each outer iteration, we calculate the representer matrix by computing
one prior trajectory, NZ adjoint representers, and NZ state representers. Finally, after
obtaining the representer coefficients, we must calculate the estimated adjoint and state
trajectories.

The CPU time is measured on a DEC Alpha workstation with a clock speed of 333MHz.
Note that the CPU times given in Table 8.1 do not include the preprocessing steps and
input/output (I/O) operations. In the current implementation, all inputs and the process
noise are kept in RAM, but the state (or the state representers) must be stored on disk.
Depending on the type of experiment, the I/O operations increase the time for the assimila-
tion by 5 . . . 20%, where the higher number is for the experiments with twelve assimilation
windows.

149

8.1.2 Computational Effort and Prior Statistics

If we compare the computational requirements of the experiments in the first and in the
second group (Table 8.1), one obvious difference is the proportion of CPU time that goes
into the process noise update. In Reference Experiment I, the model error is weak and the
correlation length is only a fraction of the size of one estimation pixel. Consequently, we
only spend about 3% of the CPU time on the process noise update, or approximately 2s of
CPU time per model integration. In Reference Experiment II, the process noise variance is
much stronger relative to the uncertainty in the initial condition, and, more importantly,
the correlation length of the model error is increased fourfold. We now have to spend about
25% of the CPU time on the process noise update, which is equivalent to spending 18.5s
per model run.

For small correlation lengths, we expect the burden for the process noise update per
model integration to grow quadratically with the increase in the correlation length, because
the convolution integral of the process noise update scales with the number of estimation
pixels that are within one correlation length from any given point. This is compatible with
the numbers given above if we also take boundary effects into account.

Moreover, the actual CPU requirements for the process noise update depend strongly
on how many components we deem uncertain in the problem at hand. Considering that
only one out of four components of the model equations is directly affected by process noise,
and that the horizontal correlation length in Reference Experiment II is only 1.2 times the
side of an estimation pixel, 25% is a significant share of the total computational effort. The
share is so high because the model itself is not horizontally coupled and therefore extremely
computationally efficient. The process noise update, by contrast, provides the horizontal
coupling of the domain.

Despite the increased burden for the process noise, the computational effort for Reference
Experiment II is still much less than for Reference Experiment I, even though the number of
pixels and data is the same for both experiments. Whereas we need more than 30 hours of
CPU time for Reference Experiment I, we only need 18 hours for Reference Experiment II.
This can be explained by considering the condition number of the representer matrix.

Although we never explicitly compute the representer matrix, its condition number does
of course affect the number of iterations needed in the conjugate gradient solver. In brief,
the representer matrix encapsulates the correlation between the measurement predictions
and the states. If there is very little model error, as was the case in Reference Experiment I,
earlier and later brightness observations carry approximately the same information on the
initial condition. As a consequence, the representer matrix is poorly conditioned. Since in
Reference Experiment II the model error is strong, earlier and later brightness observations
contain different amounts of information on the initial condition and on the model error
at a given time. By increasing the model error variance and simultaneously decreasing the
initial condition variance, we effectively improve the condition number of the representer
matrix.

Another interesting comparison is between Reference Experiment I and the assimilation
without precipitation data. Intriguingly, the computational effort for the latter experiment
is only about two thirds of the computational burden of Reference Experiment I, although
we do not supply the rain data to the assimilation algorithm. But by using different error
statistics to compensate for the lack of precipitation data, we effectively improve the condi-
tion number of the representer matrix. Of course, we pay for the withholding of input data

150

and the increased convergence speed with a poorer estimate.

In summary, we can say that the prior statistics strongly influence the computational
requirements. Increasing the horizontal correlation length of the model error leads to an
increased computational burden for the process noise update. On the other hand, increasing
the variance of the model error relative to the initial condition variance improves the condi-
tion number of the representer matrix and therefore eases the computational requirements.

8.1.3 Computational Effort for Multiple Assimilation Windows

We also observe a substantial decrease in the computational requirements if we go to multi-
ple but shorter assimilation windows. Cutting the experiment period into three assimilation
windows decreases the CPU time from 18 hours in Reference Experiment II to only 6.9 hours
for experiment A for the entire two-week period. The savings are even more dramatic if we
use twelve assimilation windows. For experiment B we only need 2.4 hours of CPU time.
This decrease in CPU requirements is due to two factors.

First, we need relatively fewer model integrations as we increase the number of assimi-
lation windows. For Reference Experiment II, we need 890 model runs to get the estimate,
whereas in experiments A and B we only need on average 372 and 98, respectively. Second,
the percentage of CPU time that goes into the process noise update decreases from 25% to
22% and 18%, respectively. This reflects the smaller relative importance of the model error
compared to the initial condition uncertainty, because in experiments A and B we estimate
the initial condition for each of the three or twelve assimilation windows. Although the
reinitialization of the error covariances follows a naive scheme and the assimilation in these
experiments is not strictly optimal, the estimates are nevertheless quite close to the optimal
estimates of Reference Experiment II (Section 7.1). For a small sacrifice in optimality, the
savings in computational effort are substantial enough to make assimilation intervals of a
few days attractive in future applications.

8.2 Computational Effort and Scalability

For operational applications, we will have to tackle bigger problems, that is we must assim-
ilate more data into larger domains. It is therefore of utmost importance to understand the
scaling of the computational requirements as we increase the size of the problem. The two
critical factors which determine the scaling are the number of scalar data that are assim-
ilated and the number of nodes in the hydrologic model. In summary, the computational
effort scales roughly with the product of the number of data and the number of estimation
pixels, although the effort appears to grow somewhat less than linearly with the number of
data. What follows is a more detailed discussion of this finding.

8.2.1 Number of Data and Efficiency of the Indirect Representer Method

The scaling of the computational effort with the number of data is closely related to the
efficiency of the indirect representer approach. When we compare the computational burden
of the indirect to the direct representer approach (Table 8.1), it is striking by how much the
computational load is reduced in the indirect method. Typically, the effort for the indirect
method is only a small percentage of what we would need in the direct approach. Of course,
these huge savings come at a cost. The price is the ready availability of the posterior

151

0 2000 4000 6000
0

5

10

15

20

25

30

35
group of reference exp I

C
P

U
 [h

]

N
Z

0 2000 4000 6000
0

5

10

15

20
group of reference exp II

C
P

U
 [h

]

N
Z

0 500 1000 1500
0

0.5

1

1.5

2
group of reference exp IIa

C
P

U
 [h

]

N
Z

reference
downscaling
repeat cycle

0 2000 4000 6000
0

5

10

15
group of reference exp I

re
la

tiv
e

ef
fo

rt
 [%

]

N
Z

0 2000 4000 6000
0

5

10

15

20
group of reference exp II

re
la

tiv
e

ef
fo

rt
 [%

]

N
Z

0 500 1000 1500
0

5

10

15

20

25
group of reference exp IIa

re
la

tiv
e

ef
fo

rt
 [%

]

N
Z

Figure 8.1: Computational effort for the ideal assimilation experiments. The top
panels show the CPU requirements as a function of the number of scalar data that are
assimilated. The lower panels show the computational effort of the indirect representer
approach relative to the direct method. Obviously, there is redundancy in the data,
and the computational burden grows less than linearly with the number of scalar
data.

covariance information, which naturally comes with the direct method (Section 2.4). But
this is a small price to pay, because it is certainly unnecessary to compute all of the posterior
covariances at each outer iteration before the estimates are even dynamically consistent. We
may still compute the individual representer fields after convergence has been achieved.

The efficiency of the indirect representer method does have an intuitive physical inter-
pretation. In brief, there are many fewer degrees of freedom in the brightness images than
there are scalar data, and the data are effectively compressed. To shed more light on this
intuitive argument, it is helpful to investigate how the computational effort of the indirect
representer method scales with the number of data. For reference, recall that the burden
for the direct method scales linearly with the number of data (Section 8.1.1).

The top panels of Figure 8.1 show the CPU requirements for the three groups of synthetic
experiments versus the number of scalar data. To avoid comparing apples and oranges, we
only plot the ideal experiments of each group. For all three groups, the computational effort
increases less than linearly with the number of data, suggesting that there is redundancy
in the additional brightness observations. Another way to look at the same phenomenon
is to plot the computational effort of the indirect method relative to the direct approach
versus the number of data, which is done in the lower panels of Figure 8.1. We can see that
the relative effort of the indirect method decreases as the number of data increases, again
suggesting that there is relatively less information in the data as their number increases.

For the downscaling experiments, the result is obvious if we look at the spatial correlation
scales of the dominant spatially distributed inputs, namely the soil texture and land cover

152

classes (Figure 5.3), the initial condition (Figure 6.3), and the precipitation. For all these
inputs, the horizontal correlation scale is well above the scale of the estimation pixels, leading
to redundant information in the brightness images. This finding confirms our hypothesis
that the indirect representer approach and a priori data compression (Section 2.5) achieve
related computational savings.

For the repeat cycle experiments, this result is not so obvious. From the 6-day repeat
cycle experiment of Section 6.4 it is clear that an excellent estimate of the initial saturation
can be obtained from only two brightness images at observation times 1 and 7. But the
repeat cycle experiments based on Reference Experiment II have a strong model error which
varies on a daily time scale. One would therefore expect that adding more information
by assimilating more brightness images increases the computational effort proportionally.
However, it appears that the brightness observations are effectively compressed in time as
well as in space by the indirect representer method.

Unlike the spatial compression of individual images, such a compression in time is not
straightforward, and it is not obvious whether it could be accommodated within the pro-
posed data assimilation method by an a priori data compression scheme (Section 2.5). This
means that the indirect representer approach is likely to be more efficient in reducing the
computational effort than a priori data compression. But recall that a priori data com-
pression greatly reduces the burden for calculating posterior error covariances (Section 2.5).
Ideally, both schemes should be implemented.

Finally, it is interesting to take a quick look at the number of model integrations that
are needed at each tangent-linear (outer loop) iteration to get the representer coefficients in
the conjugate gradient solver. For Reference Experiment I, Figure 6.5 shows that kcg = 442
(inner loop) iterations were necessary to derive the representer coefficients in the first (outer
loop) iteration. In the remaining four tangent-linear (outer loop) iterations, on average only
115 such inner loop iterations were needed.

Similar results hold if we look at the other experiments (Figures 6.15, 6.18, 6.20, 7.5,
and 7.11). On average, we only need about half the number of conjugate gradient iterations
for the second and higher (outer) iterations than we do in the first (outer) iteration. This
decrease in the computational burden is due to the much improved initial guess for the
representer coefficients in the conjugate gradient solver. Obviously, we use the estimate for
the representer coefficients from the previous iteration to initialize the conjugate gradient
solver. This means that for nonlinear problems the indirect method is relatively more
efficient (compared to the direct approach) than for linear problems.

8.2.2 Computational Effort, Resolution, and Size of the Domain

As we have seen above, the computational effort increases with the number of model runs
that are required to solve for the estimate. One crucial factor determining the compu-
tational burden of the assimilation is therefore the time it takes to integrate the model
once. Since the model is composed of a collection of independent vertical columns, the
CPU requirements for each model integration will scale with the number of estimation pix-
els. Subtracting the effort for the model error update, each model integration covering the
two-week experiment period takes approximately 60s of CPU time for the experiments of
the first two groups with 512 estimation pixels. For the experiments of the third group
with 128 estimation pixels, each model integration takes roughly 15s. This translates into
a CPU requirement of 0.01s per estimation pixel and per experiment day on the 333MHz

153

DEC Alpha workstation.

Although the number of model integrations required for the estimate is mostly deter-
mined by the number of scalar data being assimilated, the number of nodes may affect the
computational demand beyond merely increasing the CPU requirement for each model run.
However, given all the other factors, in particular the complicated dependence of the compu-
tational burden on the prior statistics, it is hard to isolate the scaling of the computational
demand with the number of nodes.

Suppose we increase the horizontal resolution of a given area, but we keep the horizontal
correlation length for the model error fixed and we assimilate the same (coarse-scale) data.
This will change the computational effort through at least three effects. First and trivially,
each model integration will take longer at the fine resolution than at the coarse resolu-
tion. Second, one correlation length covers more estimation pixels at the fine resolution
than at the coarse resolution, and the effort for the model error update will increase (Sec-
tion 8.1.2). Third, the same(!) data may have different information content when viewed
from the coarse and from the fine resolution of the estimation pixels, leading to different
savings in the indirect representer method. This last effect is related to the increase in the
relative computational effort of the indirect approach as we decrease the number of data by
assimilating coarser brightness images (Section 8.2.1).

By comparing experiments with the same number of data from the second group and the
third group (Table 8.1), we can check whether the computational effort scales only linearly
with the number of estimation pixels. As mentioned above, we have increased the correlation
length in Reference Experiment IIa and the related experiments with respect to Reference
Experiment II. This makes the relative cost of the model error update approximately equal
for both groups. If we now compare experiments of the two groups for which the same
number of data are assimilated, we find that the CPU requirements increase approximately
linearly with the number of estimation pixels. For example, if we divide the CPU time for
experiment 9 by the CPU time for experiment 18, we get 3.9, while there are four times
as many estimation pixels in experiment 9 than in experiment 18. For experiments 10 and
19, we get 3.7, and for experiments 14 and 21, we get 3.4. For experiments 11 and 20,
on the other hand, we get 6.1, but this may be due to the extreme downscaling ratio of
experiment 11. In summary, we have not found evidence that the computational effort
increases more than linearly with the number of nodes.

8.2.3 Memory Requirements

The memory requirements for the assimilation algorithm are substantial. Ideally, all vari-
ables are kept in RAM (random-access memory) during the assimilation to keep the ad-
ditional cost for I/O (input/output) operations low. As mentioned above, this was not
possible with our computing equipment. But differences in speed aside, we can treat RAM
and memory on the harddrive as being equivalent for the sake of this discussion. Also
note that it is usually possible to trade off memory requirements against CPU time by
recomputing dependent quantities each time they are needed rather than storing them.

We now discuss the memory requirements in detail. First, we have to store the model
inputs. For the numerical parameters derived from the soil texture and land cover classes,
the memory requirements are proportional to the number of estimation pixels and vertical
nodes. For the micro-meteorologic inputs, the memory requirements are proportional to
the length of the assimilation window. They are also proportional to the number pixels,

154

unless we opt for recomputing the interpolated fields whenever they are needed. Since
during the assimilation the model must be run many times, it makes sense to keep the
interpolated micro-meteorologic inputs at every pixel, together with some derived variables
such as the land surface resistances, in RAM. In our implementation, the model inputs for
the experiments of Chapters 6 and 7 require about 60MB in double precision.

Since the underlying hydrologic model is nonlinear, the adjoint operators depend on
the state trajectories. Moreover, the variational method processes the entire assimilation
window in a batch mode. It is therefore necessary to store the full state trajectory. In our
example, the number of scalar states for all times is roughly 107 (Sections 4.2 and 5.2). For
double precision, this is equivalent to about 80MB.

Moreover, we need to store the estimates of the uncertain inputs. The memory require-
ments for the initial condition parameters are small, but we must also store up to two copies
of the model error fields. First, the adjoint operator depends on the model error, because
the coefficient in front of the process noise term in the state equation depends on the state
itself (Section 2.2). We must therefore store the model error estimate of the previous iter-
ation. Second, we may have to store the model error that is under update in the current
iteration. Depending on the implementation, we may be able to use the memory allocated
for the state trajectories to store the current model error estimate. But since we do not
keep the entire state trajectory in RAM due to memory limitations, this is not possible in
our implementation.

The actual memory requirements for storing the process noise depend strongly on how
many components of the model we deem uncertain in the problem at hand. However, the
memory requirements will always scale with the length of the assimilation window. For the
experiments of Chapters 6 and 7, we need about 26MB of memory for storing the model
error.

8.2.4 Parallel Computing

By design, the direct representer method is ideally suited for parallel computing [Bennett
and Baugh, 1992]. In theory, each of the individual representer fields can be integrated
simultaneously on a separate processor. The indirect representer approach, by contrast,
does not generally allow for such parallel processing. But in our case, the structure of the
hydrologic model would allow us to integrate the individual estimation pixels in parallel.
Ideally, with Nep processors, each model integration would only take as long as it takes
to run a single one-dimensional column. Consequently, parallel computing offers great
opportunities for the land surface data assimilation problem.

8.3 Comparison with Other Assimilation Techniques

In this Section, we briefly compare the computational requirements of the iterated indi-
rect representer technique, the gradient-descent (“adjoint”) method [Bennett, 1992], the
full Kalman filter (KF) [Gelb, 1974], the Ensemble Kalman Filter (EnKF) (Section 1.2.2,
[Evensen, 1994b]), error subspace statistical estimation (ESSE) (Section 1.2.2, [Lermusiaux
and Robinson, 1999a]), and Optimal Interpolation (Section 1.2.1, [Daley, 1991]). Since we
have only implemented the representer algorithm, the comparison with the other methods
remains theoretical in nature. Nevertheless, an approximate count of the floating point
operations provides sufficient insight into the characteristic requirements of each method.

155

Among the techniques mentioned above, the Kalman filter, the representer method, and
the gradient-descent approach are optimal algorithms which fully propagate the error co-
variances. The big difference between these methods is that the Kalman filter propagates
the error covariances explicitly, whereas the representer approach and the gradient-descent
technique accomplish the error covariance propagation implicitly through the adjoint equa-
tions. The Ensemble Kalman Filter, ESSE, and Optimal Interpolation are suboptimal
assimilation algorithms which rely on approximations of the dynamic evolution of the error
covariances.

We now discuss the approximate operations count of each method for the experiments
of Chapters 6 and 7. Recall from Sections 4.2 and 5.2 that the state vector at each time
step is of length NxNy(Nz + 5) = 6144. With Nt = 1280 time steps, the total number
of scalar states is NxNy(Nz + 5)Nt ≈ 107. For each model integration, we simply count
O(107) floating point operations. The dimension of the process noise in the example is
3NxNy = 1536 at every time step or a total of 3NxNyNt ≈ 2 · 106 scalar variables. The
number of data is 512 in each of the 12 images, and the total number of scalar data is
NZ = 6144. Note that we only discuss the leading order of the operations count.

8.3.1 Optimal Assimilation Algorithms

The explicit propagation of the error covariances in the Kalman filter requires manipulating
matrices of the size of the state vector at each time step. The operations count for such
matrix multiplications scales with the size of the matrix to the third power. Since this
has to be done at every time step, the total count for the Kalman filter is O(1014). The
actual operations count is even higher, because in the examples the process noise is colored,
and the state must first be augmented. Note that solving the smoothing problem with the
Kalman smoother approximately doubles the effort. The computational burden is so heavy
because the Kalman filter comes with the full posterior covariance information.

As discussed above, the iterated indirect representer method scales with the time it
takes to integrate the model once times the number of model integrations. Using 1000
model integrations and doubling the effort to accommodate the process noise update, the
total operations count is O(1010). It is important to note that this does not include the
posterior covariance information. We also stress that here we make use of the particular
structure of the land surface model and the nature of the brightness observations, which
implies that the results of this Section are valid only for the land surface data assimilation
problem discussed in this thesis.

At first glance, the gradient-descent method requires only two model integrations at
each iteration for the evaluation of the gradient. But the number of iterations needed for
convergence strongly depends on the technique that is used for stepping down the gradient.
The steepest-descent algorithm, which does not require any additional effort, is notoriously
inefficient and should never be used [Press et al., 1992]. One alternative is to determine a
“conjugate” gradient descent direction and to search for the minimum along this direction.
For the line search, the model needs to be integrated multiple times and the objective
function must be determined. If there is process noise, the latter step makes the method
unattractive in practice, because the model error covariance is of size 106×106 and must be
inverted. The problem becomes especially severe if the process noise is colored, as it is in
our example. Regardless of the particular variant employed, the gradient-descent method is
always impractical in our example because the search happens in the space of the uncertain

156

inputs, of which there are many more than there are scalar data.

8.3.2 Suboptimal Assimilation Algorithms

The effort for the Ensemble Kalman filter or related techniques, such as for example the
error subspace statistical estimation (ESSE) scheme of Lermusiaux and Robinson [1999a],
depends critically on the number of realizations or ensemble members that are used to ap-
proximate the error covariances. For a problem with 2800 data, a total of 108 states, and
no model error, Lermusiaux and Robinson [1999b] need approximately 200 ensemble mem-
bers. Moreover, the decomposition of the forecast error covariance and the actual update
step require additional matrix manipulations. If we use their expression for the operations
count (Table 2 of [Lermusiaux and Robinson, 1999b]) and substitute our numbers, the ESSE
scheme and the EnKF require roughly O(1011) floating point operations. Since these tech-
niques approximate the error covariance propagation, the estimates are not optimal, but
the methods provide valuable information about the posterior error covariances.
Finally, Optimal Interpolation as the most suboptimal scheme essentially requires one

model integration and the manipulation of matrices which are of the size of the data vector
at each update time. The operations count for Optimal Interpolation is roughly O(109).

8.3.3 Summary

In conclusion, the full Kalman filter or smoother cannot be used for large-scale land data
assimilation. Likewise, the optimal adjoint-based gradient-descent method is not compu-
tationally feasible if model errors are present. From a computational point of view, the
indirect iterated representer technique is competitive with suboptimal sequential Monte
Carlo methods like the Ensemble Kalman Filter and ESSE. The great advantage of the
representer technique lies with the optimality of the estimates. If posterior covariance
information is required, the sequential Monte Carlo methods may be a better choice. Op-
timal Interpolation is of course the cheapest alternative, but the estimates are poorer and
no posterior covariance information is provided.

157

